题目列表(包括答案和解析)
数列首项,前项和满足等式(常数,……)
(1)求证:为等比数列;
(2)设数列的公比为,作数列使 (……),求数列的通项公式.
(3)设,求数列的前项和.
【解析】第一问利用由得
两式相减得
故时,
从而又 即,而
从而 故
第二问中, 又故为等比数列,通项公式为
第三问中,
两边同乘以
利用错位相减法得到和。
(1)由得
两式相减得
故时,
从而 ………………3分
又 即,而
从而 故
对任意,为常数,即为等比数列………………5分
(2) ……………………7分
又故为等比数列,通项公式为………………9分
(3)
两边同乘以
………………11分
两式相减得
(本小题满分14分) 计算下列各式的值:
(1) ;(7分)
(2).(7分)
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验如下:
零件的个数(个) |
2 |
3 |
4 |
5 |
加工的时间(小时) |
2.5 |
3 |
4 |
4.5 |
(1)在给定坐标系中画出表中数据的散点图;
(2)求关于的线性回归方程;
(3)试预测加工10个零件需要多少时间?
(,)
【解析】第一问中,利用表格中的数据先作出散点图
第二问中,求解均值a,b的值,从而得到线性回归方程。
第三问,利用回归方程将x=10代入方程中,得到y的预测值。
解:(1)散点图(略) (2分)
(2) (4分)
∴ (7分)
(8分)∴回归直线方程: (9分)
(3)当∴预测加工10个零件需要8.05小时。
(本小题满分14分) 计算下列各式的值:
(1) ;(7分)
(2).(7分)
(本小题满分14分) 计算下列各式的值:
(1) ;(7分)
(2).(7分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com