16. 已经函数 (Ⅰ)函数的图象可由函数的图象经过怎样变化得出? (Ⅱ)求函数的最小值.并求使用取得最小值的的集合. 查看更多

 

题目列表(包括答案和解析)

(2012•厦门模拟)已知函数f(x)=Asin(2x+θ),其中A≠0,θ∈(0,
π
2
)
,试分别解答下列两小题.
(I)若函数f(x)的图象过点E(-
π
12
,1),F(
π
6
3
)
,求函数y=f(x)的解析式;
(Ⅱ)如图,点M,N分别是函数y=f(x)的图象在y轴两侧与x轴的两个相邻交点,函数图象上的一点P(t,
3
π
8
)满足
PN
MN
=
π
2
 
16
,求函数f(x)的最大值.

查看答案和解析>>

设某物体一天中的温度T是时间t的函数,已知T(t)=at3+bt2+ct+d(a≠0),其中温度的单位是℃,时间的单位是小时,中午12:00相应的t=0,中午12:00以后相应的t取正数,中午12:00以前相应的t取负数(如早上8:00相应的t=-4,下午16:00相应的t=4),若测得该物体在早上8:00的温度为8℃,中午12:00的温度为60℃,下午13:00的温度为58℃,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度T关于时间t的函数关系式;
(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?

查看答案和解析>>

已知函数f(x)=x2+2ax+2,x∈[-4,4]
(1)求实数a的取值范围,使y=f(x)在区间[-4,4]上是单调函数
(2)若函数f(x)(x∈R)的图象与直线y=-2无交点,求实数a的取值范围
(3)若函数f(x)在[-4,4]上的最小值为-16,求a的值.

查看答案和解析>>

设定义在R上的函数f(x)满足(1)当m,n∈R时,f(m+n)=f(m)•f(n);(2)f(0)≠0;(3)当x<0时,f(x)>1,则在下列结论中:
①f(a)•f(-a)=1;
②f(x)在R上是递减函数;
③存在x0,使f(x0)<0;
④若f(2)=
2
,则f(
1
4
)=
1
4
,f(
1
6
)=
1
6

正确结论的个数是(  )

查看答案和解析>>

(2012•马鞍山二模)下面命题:
①函数f(x)=lg
xx2+1
的定义域是(0,+∞);
②在空间中,若四点不共面,则每三个点一定不共线;
③若数列{an}为等比数列,则“a3a5=16”是“a4=4”的充分不必要条件;
④直线l1经过点(3,a),B(a-2,3),直线l2经过点C(2,3),D(-1,a-2),若l1⊥l2,则a=0;
其中真命题的序号为
①②
①②
(写出所有真命题的序号).

查看答案和解析>>


同步练习册答案