题目列表(包括答案和解析)
设函数的定义域为R, 当x<0时, >1, 且对于任意的实数, 有
成立. 又数列满足, 且
(1)求证: 是R上的减函数;
(2)求的值;
(3)若不等式≥k ?对一切均成立, 求的最大值.
已知数列中,,且有.
(1)写出所有可能的值;
(2)是否存在一个数列满足:对于任意正整数,都有成立?若有,请写出这个数列的前6项,若没有,说明理由;
(3)求的最小值.
设数列满足:对于任何正整数,有,且存在常数,对于任何正整数,有,则数列的通项公式为___________
在数列中,如果存在非零常数,使得对于任意非零正整数均成立,那么就称数列为周期数列,其中叫做数列的周期.已知周期数列满足()且,,当的周期最小时,该数列前2005项和是 .
如果项数均为的两个数列满足且集合,则称数列是一对“项相关数列”.
(Ⅰ)设是一对“4项相关数列”,求和的值,并写出一对“项
关数列”;
(Ⅱ)是否存在“项相关数列”?若存在,试写出一对;若不存在,请说明理由;
(Ⅲ)对于确定的,若存在“项相关数列”,试证明符合条件的“项相关数列”有偶数对.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com