(南昌市2007-2008学年度高三第一轮复习训练) 数列 (1)求 (2)证明猜想的正确性 解 : 同理得. 猜想 (2)证明:n=1时. 假设n=k 时.猜想正确.即 又 即n=k+1时也成立 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的首项a1=
3
5
an+1=
3an
2an+1
,n=1,2,…

(1)求证:数列{
1
an
-1}
为等比数列;
(2)记Sn=
1
a1
+
1
a2
+…
1
an
,若Sn<100,求最大的正整数n.
(3)是否存在互不相等的正整数m,s,n,使m,s,n成等差数列且am-1,as-1,an-1成等比数列,如果存在,请给出证明;如果不存在,请说明理由.

查看答案和解析>>

(2012•深圳二模)定义数列{an}:a1=1,a2=2,且对任意正整数n,有an+2=[2+(-1)n]an+(-1)n+1+1.
(1)求数列{an}的通项公式与前n项和Sn
(2)问是否存在正整数m,n,使得S2n=mS2n-1?若存在,则求出所有的正整数对(m,n);若不存在,则加以证明.

查看答案和解析>>

正整数数列{an}满足:a1=1,an+1=
an-n,an>n
an+n,an≤n.

(Ⅰ)写出数列{an}的前5项;
(Ⅱ)将数列{an}中所有值为1的项的项数按从小到大的顺序依次排列,得到数列{nk},试用nk表示nk+1(不必证明);
(Ⅲ)求最小的正整数n,使an=2013.

查看答案和解析>>

(2011•绵阳一模)已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
).又数列{an}满足,a1=
1
2
,an+1=
2an
1+an2

(I )证明:f(x)在(-1,1)上是奇函数
( II )求f(an)的表达式;
(III)设bn=-
1
2f(an)
,Tn为数列{bn}的前n项和,试问是否存在正整数m,n,使得
4Tn-m
4Tn+1-m
1
2
成立?若存在,求出这样的正整数;若不存在,请说明理由.

查看答案和解析>>

设{an},{bn}都是各项为正数的数列,对任意的正整数n,都有an,bn2,an+1成等差数列,bn2,an+1,bn+12成等比数列.
(1)证明数列{bn}是等差数列;
(2)如果a1=1,b1=2,记数列{
1an
}
的前n项和为Sn,问是否存在常数λ,使得bn>λSn对任意n∈N*都成立?若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案