围建一个面积为360m2的矩形场地.要求矩形场地的一面利用旧墙.其它三面围墙要新建.在旧墙的对面的新墙上要留一个宽度为2m的进出口.如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x. (Ⅰ)将y表示为x的函数: (Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小.并求出最小总费用. 解:(1)如图.设矩形的另一边长为a m 则-45x-180(x-2)+180·2a=225x+360a-360 由已知xa=360,得a=, 所以y=225x+ (II) .当且仅当225x=时.等号成立. 即当x=24m时.修建围墙的总费用最小.最小总费用是10440元. 第三节 不等式组与简单的线性规划 查看更多

 

题目列表(包括答案和解析)

(12分) 围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2的进出口,如图所示。已知旧墙的维修费用为45元/,新墙的造价为180元/。设利用的旧墙长度为(单位:),修建此矩形场地围墙的总费用为(单位:元) (Ⅰ)将表示为的函数;(Ⅱ)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

 

查看答案和解析>>

围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元).

(1)将y表示为x的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元).

(1)将y表示为x的函数;

(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

 

查看答案和解析>>

围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x,修建总费用为y(单位:元).

(Ⅰ)将y表示为x的函数:

(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

(本题满分12分)围建一个面积为360㎡的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示。已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为(单位:m), 修建此矩形场地围墙的总费用为(单位:元)。

(1)将表示为的函数;

(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

 

 

查看答案和解析>>


同步练习册答案