小问5分. 如题(20)图.四棱锥中.底面为矩形.底面..点是棱的中点. (Ⅰ)证明:平面, (Ⅱ)若.求二面角的平面角的余弦值. 查看更多

 

题目列表(包括答案和解析)

数列首项,前项和满足等式(常数……)

(1)求证:为等比数列;

(2)设数列的公比为,作数列使 (……),求数列的通项公式.

(3)设,求数列的前项和.

【解析】第一问利用由

两式相减得

时,

从而  即,而

从而  故

第二问中,     又为等比数列,通项公式为

第三问中,

两边同乘以

利用错位相减法得到和。

(1)由

两式相减得

时,

从而   ………………3分

  即,而

从而  故

对任意为常数,即为等比数列………………5分

(2)    ……………………7分

为等比数列,通项公式为………………9分

(3)

两边同乘以

………………11分

两式相减得

 

查看答案和解析>>

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验如下:

零件的个数(个)

2

3

4

5

加工的时间(小时)

2.5

3

4

4.5

(1)在给定坐标系中画出表中数据的散点图;

(2)求关于的线性回归方程

(3)试预测加工10个零件需要多少时间?

【解析】第一问中,利用表格中的数据先作出散点图

第二问中,求解均值a,b的值,从而得到线性回归方程。

第三问,利用回归方程将x=10代入方程中,得到y的预测值。

解:(1)散点图(略)   (2分)

(2) (4分)

         (7分)

        (8分)∴回归直线方程:       (9分)

(3)当∴预测加工10个零件需要8.05小时。

 

查看答案和解析>>

已知数列的前n项和,数列 

(1)求的通项;

(2)若,求数列的前n项和

【解析】第一问中,利用当n=1时,

        当时,

得到通项公式

第二问中,∵   ∴∴数列  是以2为首项,2为公比的等比数列,利用错位相减法得到。

解:(1)当n=1时,                      ……………………1分

        当时, ……4分

        又

        ∴                            ……………………5分

(2)∵   ∴        

     ∴                 ……………………7分

     又∵    ∴ 

     ∴数列  是以2为首项,2为公比的等比数列,

     ∴                          ……………………9分

     ∴                        

     ∴     ①

          ②

     ①-②得:

 ∴

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

(本小题满分14分) 计算下列各式的值:

(1) ;(7分)

(2).(7分)

查看答案和解析>>


同步练习册答案