题目列表(包括答案和解析)
设P为直线3x+4y+3=0上的动点,过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为
1
如图设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.
如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.
设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H.是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.
如图,已知圆O:x2+y2=4与y轴正半轴交于点P,A(-1,0),B(1,0),直线l与圆O切于点S(l不垂直于x轴),抛物线过A、B两点且以l为准线.
(Ⅰ)当点S在圆周上运动时,求证:抛物线的焦点Q始终在某一椭圆C上,并求出该椭圆C的方程;
(Ⅱ)设M、N是(Ⅰ)中椭圆C上除短轴端点外的不同两点,且,问:△MON的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com