设直线方程的一些常用技巧: 查看更多

 

题目列表(包括答案和解析)

如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A(x1,y1),B(x2,y2)两点.
(I)若
AP
PB
(λ∈R)
,证明:λ=-
x1
x2

(II)在(I)条件下,若点Q是点P关于原点对称点,证明:
QP
⊥(
QA
QB
)

(III)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

查看答案和解析>>

设直线l的方程为(a+1)x+y+2-a=0(a∈R)
(1)若直线l在两坐标轴上的截距相等,则直线l的方程是
3x+y=0或x+y+2=0
3x+y=0或x+y+2=0

(2)若直线l不经过第二象限,则实数a的取值范围是
(-∞,-1]
(-∞,-1]

查看答案和解析>>

已知椭圆C的中心在原点,焦点在x轴上,离心率为
1
2
,短轴长为4
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为
1
2

①求四边形APBQ面积的最大值;
②设直线PA的斜率为k1,直线PB的斜率为k2,判断k1+k2的值是否为常数,并说明理由.

查看答案和解析>>

精英家教网如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为
2
3
,点M的横坐标为
9
2

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1•k2的取值范围.

查看答案和解析>>

设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3;
②斜率为1.

查看答案和解析>>


同步练习册答案