6.已知函数f(x)是定义在实数集R上的不恒为零的偶函数.且对任意实数x都有xf(x+1)=(1+x)f(x).则f(f())的值是 ( ) A.0 B. C.1 D. 解析:由已知令x=0.则f(0)=0. 由已知令x=-.得-f()=f(-)=f().∴f()=0. 又令x=.得f()=f(). 又∵f()=0.∴f()=0. 再令x=.得f()=f(). ∵f()=0.∴f()=0. ∴f(f())=f(0)=0. 答案:A 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)定义在区间,对任意x,y∈(-1,1),恒有成立,又数列{an}满足

(Ⅰ)在(-1,1)内求一个实数t,使得

(Ⅱ)求证:数列{f{an}}是等比数列,并求f{an}的表达式;

(Ⅲ)设,是否存在,使得对任意恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)定义在区间,对任意x,y∈(-1,1),恒有成立,又数列{an}满足

(Ⅰ)在(-1,1)内求一个实数t,使得

(Ⅱ)求证:数列{f(an)}是等比数列,并求f(an)的表达式;

(Ⅲ)设,是否存在m∈N*,使得对任意n∈N*恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)定义在区间(-1,1)上,f()=-1,对任意x,y∈(-1,1),恒有成立,又数列{an}满足

(Ⅰ)在(-1,1)内求一个实数t,使得

(Ⅱ)求证:数列{f(an)}是等比数列,并求f(an)的表达式;

(Ⅲ)设,是否存在m∈N*,使得对任意n∈N*恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

对定义在上,并且同时满足以下两个条件的函数称为函数。
①对任意的,总有
②当时,总有成立。
已知函数是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数函数,求实数的值;
(3)在(2)的条件下,讨论方程解的个数情况。

查看答案和解析>>

(本题共3小题,满分18分。第1小题满分4分,第2小题满分7分,第3小题7分)

 

对定义在上,并且同时满足以下两个条件的函数称为函数.

① 对任意的,总有

② 当时,总有成立.

已知函数是定义在上的函数.

(1)试问函数是否为函数?并说明理由;

(2)若函数函数,求实数的值;

(3)在(2)的条件下,是否存在实数,使方程恰有两解?若存在,求出实数的取值范围;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案