8.已知椭圆G的中心在坐标原点.长轴在x轴上.离心率为.且G上一点到G的两个焦点的距离之和为12.则椭圆G的方程为 . 解析:由题意得2a=12.=.所以a=6.c=3.b=3.故椭圆方程为+=1. 答案:+=1 查看更多

 

题目列表(包括答案和解析)

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆C:x2+y2+2x-4y-20=0的圆心为点A.
(1)求椭圆G的方程;  
(2)求△AF1F2面积;
(3)求经过点(-3,4)且与圆C相切的直线方程;
(4)椭圆G是否在圆C的内部,请说明理由.

查看答案和解析>>

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为(  )

查看答案和解析>>

已知椭圆G的中心在坐标原点,离心率为
5
3
,焦点F1、F2在x轴上,椭圆G上一点N到F1和F2的距离之和为6.
(1)求椭圆G的方程;
(2)若∠F1NF2=90°,求△NF1F2的面积;
(3)若过点M(-2,1)的直线l与椭圆交于A、B两点,且A、B关于点M对称,求直线l的方程.

查看答案和解析>>

(2012•房山区一模)已知椭圆G的中心在坐标原点,焦点在x轴上,一个顶点为A(0,-1),离心率为
6
3

(I)求椭圆G的方程;
(II)设直线y=kx+m与椭圆相交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为
3
2
,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆Ck:x2+y2+2kx-4y-21=0(k∈R)的圆心为点Ak
(1)求椭圆G的方程
(2)求△AkF1F2的面积
(3)问是否存在圆Ck包围椭圆G?请说明理由.

查看答案和解析>>


同步练习册答案