函数的自变量取值范围是 . 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)当时,若上单调递增,求的取值范围;

(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;

(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。

查看答案和解析>>

 设函数

(1)当时,已知上单调递增,求的取值范围;

(2)当是整数时,存在实数,使得的最大值,且的最小值,求所有这样的实数对

(3)定义函数,则当取得最大值时的自变量的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明)。

 

 

查看答案和解析>>

(本题满分14分)

已知函数

(Ⅰ)当时,若上单调递增,求的取值范围;

(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;

(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。

 

查看答案和解析>>

(本题满分14分)
已知函数
(Ⅰ)当时,若上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。

查看答案和解析>>

(本题满分14分)
已知函数
(Ⅰ)当时,若上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。

查看答案和解析>>


同步练习册答案