2.已知P是椭圆上任意一点.P与两焦点连线互相垂直.且P到两准线的距离分别是6.12.则椭圆方程为 . 查看更多

 

题目列表(包括答案和解析)

已知P是椭圆+=1(a>b>0)上任意一点,P与两焦点连线互相垂直,且P到两准线距离分别为6、12,则椭圆方程为______________________.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的左右焦点分别为F1,F2
(1)若椭圆C上的点A(1,
3
2
)到F1,F2的距离之和为4,求椭圆C的方程和焦点的坐标;
(2)若M,N是C上关于(0,0)对称的两点,P是C上任意一点,直线PM,PN的斜率都存在,记为kPM,kPN,求证:kPM与kPN之积为定值.

查看答案和解析>>

已知离心率为
3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1
的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1
2
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
4
5
5
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

已知C:
x2
a2
+
y2
b2
=1(a>b>0)
椭圆具有性质:若M,N是椭圆上关于原点O对称的两点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P的位置无关的定值,试写出双曲线
x2
a2
-
y2
b2
=1
具有类似特性的性质并加以证明.

查看答案和解析>>

已知椭圆具有性质:若M、N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线C′:
x2
a2
-
y2
b2
=1写出具有类似特性的性质,并加以证明.

查看答案和解析>>


同步练习册答案