18.如图3所示.四棱锥中.底面为正方形. 平面....分别为 ..的中点. (1)求证:, (2)求二面角D-FG-E的余弦值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 如图3所示,四棱锥中,底面为正方形, 平面分别为的中点.

(1)求证:

(2)求二面角DFGE的余弦值.

 

查看答案和解析>>

(本小题满分14分) 如图3所示,四棱锥中,底面为正方形, 平面分别为的中点.
(1)求证:
(2)求二面角DFGE的余弦值.

查看答案和解析>>

如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若EF分别为PCBD的中点.

(1)求证:平面PAD

(2)求证:平面PDC平面PAD

(3)求四棱锥的体积.

 

查看答案和解析>>

如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若EF分别为PCBD的中点.

(1)求证:平面PAD
(2)求证:平面PDC平面PAD
(3)求四棱锥的体积.

查看答案和解析>>

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>


同步练习册答案