3.斜率公式:过两点的直线的斜率为.当时.,当时.直线斜率不存在.另外.斜率公式中两点所确定的斜率与两点的顺序无关. 斜率的定义与斜率公式为两种不同的确定直线斜率的方法.分别适用于已知直线的倾斜角和直线上两点的坐标求直线斜率的情况.我们使用时可根据题目的具体条件进行选择. 查看更多

 

题目列表(包括答案和解析)

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使我们想到可以用向量作为解析几何的研究工具.如图,设直线l的倾斜角为α(α90°).在l上任取两个不同的点,不妨设向量的方向是向上的,那么向量的坐标是().过原点作向量,则点P的坐标是(),而且直线OP的倾斜角也是α.根据正切函数的定义得

这就是《数学2》中已经得到的斜率公式.上述推导过程比《数学2》中的推导简捷.你能用向量作为工具讨论一下直线的有关问题吗?例如:

(1)过点,平行于向量的直线方程;

(2)向量(AB)与直线的关系;

(3)设直线的方程分别是

那么,的条件各是什么?如果它们相交,如何得到它们的夹角公式?

(4)到直线的距离公式如何推导?

查看答案和解析>>


同步练习册答案