8.在数列{an}中.an=4n-.a1+a2+-+an=an2+bn.n∈N*.其中a.b为常数.则li 的值为 . [解析] 由an-an-1=4n--=4知该数列为等差数列.a1=4-=.又Sn=na1+d=2n2-n=an2+bn.得 故li =li =li =1. [答案] 1 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an},{bn}的通项公式;
(2)记Tn=a1b1+a2b2+ +anbn,求Tn

查看答案和解析>>

在数列{xn}中,a1=1,,猜想这个数列的一个通项公式为

[  ]

A.

an=n

B.

an=2n-1

C.

D.

an=n2

查看答案和解析>>

已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求数列{an},{bn}的通项公式;
(2)记Tn=a1b1+a2b2+ +anbn,求Tn

查看答案和解析>>

已知n∈N*,数列{dn}满足dn,数列{an}满足and1d2d3+…+d2n,又知在数列{bn}中,b1=2,且对任意正整数mn.
(1)求数列{an}和数列{bn}的通项公式;
(2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2 013项和.

查看答案和解析>>

已知n∈N*,数列{dn}满足dn,数列{an}满足and1d2d3+…+d2n,又知在数列{bn}中,b1=2,且对任意正整数mn.
(1)求数列{an}和数列{bn}的通项公式;
(2)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2 013项和.

查看答案和解析>>


同步练习册答案