3.比较指数函数与对数函数类型的数值间的大小关系问题是高考中常见题型.具体解法是:(1)底数相同指数不同时.要考虑指数函数的单调性,(2)底.指数都不同时要借助中间值比较两个对数的大小.关键是构造对数函数.若底数不相同时.可运用换底公式化为同底数的对数.同时还要注意与0比较或与1比较,再不行可考虑商值比较法. 查看更多

 

题目列表(包括答案和解析)

同学们学习了《必修1》的函数一章,初步掌握了研究函数的一些基本方法。在下面的学习中我们将接触三角函数,比如我们要学习“正弦三角函数y=sinx”,请你谈谈你想从那几个方面来研究这个函数。(可类比研究指数函数与对数函数的方法,至少说出4个方面)

1、­­                           

 

2、                           

 

3、                           

 

4、                           

查看答案和解析>>

我们知道,(0a1)(0a1)互为反函数,只要把同底的指数函数与对数函数的解析式互化,就可以由其中的一个得到它的反函数的解析式.仿此,请探究函数y=2x1是否有反函数.如果有,你能否求出反函数?

查看答案和解析>>

我们知道,(0<a≠1)与(0<a≠1)互为反函数,只要把同底的指数函数与对数函数的解析式互化,就可以由其中的一个得到它的反函数的解析式.仿此,请探究函数y=2x+1是否有反函数.如果有,你能否求出反函数?

查看答案和解析>>

指数函数y=3x与对数函数y=log3x的图象关于直线
 
对称.

查看答案和解析>>

设指数函数y=ax与对数函数y=logax(a>0,a≠1)的图象分别为C1,C2,点M在曲线C1上,线段OM(O为坐标原点)交曲线C1于另一点N.若曲线C2上存在一点P,使点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标的2倍,则点P的坐标是(  )

查看答案和解析>>


同步练习册答案