题目列表(包括答案和解析)
1 |
3 |
n |
k=1 |
g(k) |
(bk+1)(bk+1+1) |
1 |
3 |
n |
i-1 |
对数列{an},如果k∈N*及λ1,λ2,…,λk∈R,使an+k=λ1an+k-1+λ2an+k-2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:
①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为an=n2,则{an}为3阶递归数列.
其中正确结论的个数是
A.0
B.1
C.2
D.3
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com