4.2数量积的坐标表示.模.夹角 查看更多

 

题目列表(包括答案和解析)

出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
e1
e2
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
a
,则存在唯一的一对实数λ,μ,使得
a
=λ
e1
e2
,我们就把实数对(λ,μ)称作向量
a
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
i
j
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
i
j
>=
π
3

(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i
j
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
a
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.

查看答案和解析>>

已知向量
a
=(4,3),
b
=(-1,2)
,若向量
a
+k
b
a
-
b
垂直,则k的值为(  )
A.
23
3
B.7 下列人类所需的营养物质中,既不参与构成人体细胞,也不为人体提供能量的是,答案:0,选项:维生素,选项:水,选项:无机盐,... - 初中生物 - 精英家教网 .artpreview dt{background:#fff;color:#000}#cont{background:#fff url(http://img.jyeoo.net/images/body_bg.jpg) repeat-x;margin:0} function initJavaScriptCallback() { QuesCart.init("bio", true); } var imageRootUrl="http://img.jyeoo.net/",wwwRootUrl="http://www.jyeoo.com/",blogRootUrl="http://blog.jyeoo.com/",spaceRootUrl="http://space.jyeoo.com/",loginUrl="http://www.jyeoo.com/",logoutUrl="http://www.jyeoo.com/account/logoff",scriptsUrl="http://img.jyeoo.net/scripts/",isMobile=false;var mustyleAttr={color:"#000000",fontsize:"13px",fontfamily:"arial",displaystyle:"true"};document.domain="jyeoo.com";$.ajaxSetup({cache:true});C.-
11
5
D.-
23
3
考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:根据向量坐标运算的公式,结合
a
=(4,3),
b
=(-1,2)
,可得向量
a
+k
b
a
-
b
的坐标.再根据向量
a
+k
b
a
-
b
互相垂直,得到它们的数量积等于0,利用两个向量数量积的坐标表达式列方程,解之可得k的值.∵
a
=(4,3),
b
=(-1,2)
a
+k
b
=(4-k,3+2k),
a
-
b
=(5,1)∵向量
a
+k
b
a
-
initJavaScript(); 充值|设为首页|免费注册|登录
输入公式
在线问答在线组卷在线训练 精英家教网 更多试题 》试题下列人类所需的营养物质中,既不参与构成人体细胞,也不为人体提供能量的是(  )
A.维生素B.水C.无机盐D.脂肪
考点:人体需要的主要营养物质.分析:食物中含有六大类营养物质:蛋白质、糖类、脂肪、维生素、水和无机盐,每一类营养物质都是人体所必需的.食物所含的六类营养物质中,能为人体提供能量的是糖类、脂肪和蛋白质,同时这三类物质也是组织细胞的组成成分,水、无机盐和维生素不能为人体提供能量.其中糖类是最主要的供能物质,人体进行各项生命活动所消耗的能量主要来自于糖类的氧化分解,约占人体能量供应量的70%.脂肪也是重要的供能物质,但是人体内的大部分脂肪作为备用能源贮存在皮下等处,属于贮备能源物质.蛋白质也能为生命活动提供一部分能量,但蛋白质主要是构成组织细胞的基本物质,是人体生长发育、组织更新的重要原料,也是生命活动的调节等的物质基础.维生素属于有机物,但它既不能为人体提供能量,也不参与人体组织的构成,但它对人体的生命活动具有重要的调节作用.水和无机盐属于无机物.其中水既是人体重要的构成成分,也是人体各项生命活动进行的载体.无机盐也参与构成人体细胞.
故选:A点评:解答此题的关键是熟练掌握人体需要的营养物质及其作用.答题:xushifeng老师 隐藏解析在线训练

查看答案和解析>>

出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量,则存在唯一的一对实数λ,μ,使得=,我们就把实数对(λ,μ)称作向量的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<>=
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.

查看答案和解析>>

出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取数学公式数学公式为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量数学公式,则存在唯一的一对实数λ,μ,使得数学公式=数学公式数学公式,我们就把实数对(λ,μ)称作向量数学公式的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用数学公式数学公式表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<数学公式数学公式>=数学公式
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量数学公式数学公式做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量数学公式的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.

查看答案和解析>>

出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
e1
e2
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
a
,则存在唯一的一对实数λ,μ,使得
a
=λ
e1
e2
,我们就把实数对(λ,μ)称作向量
a
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
i
j
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
i
j
>=
π
3

(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i
j
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
a
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.

查看答案和解析>>


同步练习册答案