3.求函数的定义域.值域.并判断其单调性 [解析]因为必为奇数.并且 所以函数的定义域为.类比的图象可知.所求函数的值域为.并且在上为增函数 [备选例题]已知函数满足 (1)求的值并求出相应的的解析式, 中得到的函数.试判断是否存在.使函数在区间上的值域为?若存在.求出,若不存在.说明理由 [解题思路]利用求.易得的解析式.再利用表达从而求解 [解析](1)因为.所以在第一象限是增函数 故.解得 又.所以或.当或时. 所以 (2)假设存在满足题设.由(1)知. 因为.所以两个最值点只能在端点和顶点处取到 而.所以 .解得.所以存在满足题意 ★抢分频道 基础巩固训练: 查看更多

 

题目列表(包括答案和解析)

定义:若函数y=f(x)在某一区间D上任取两个实数x1、x2,且x1≠x2,都有
f(x1)+f(x2)
2
>f(
x1+x2
2
)
,则称函数y=f(x)在区间D上具有性质L.
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明).
(2)对于函数f(x)=x+
1
x
,判断其在区间(0,+∞)上是否具有性质L?并用所给定义证明你的结论.
(3)若函数f(x)=
1
x
-ax2
在区间(0,1)上具有性质L,求实数a的取值范围.

查看答案和解析>>

定义:若函数在某一区间D上任取两个实数,且,都有,则称函数在区间D上具有性质L。

(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。

(2)对于函数,判断其在区间上是否具有性质L?并用所给定义证明你的结论。

(3)若函数在区间(0,1)上具有性质L,求实数的取值范围。

 

查看答案和解析>>

定义:若函数在某一区间D上任取两个实数,且,都有,则称函数在区间D上具有性质L。
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明)。
(2)对于函数,判断其在区间上是否具有性质L?并用所给定义证明你的结论。
(3)若函数在区间(0,1)上具有性质L,求实数的取值范围。

查看答案和解析>>

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(数学公式)>数学公式[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f()>[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>


同步练习册答案