34 结果为“21 9□8□7□6□5□4□3□2□1 = 21在□填上加号或减号.使等式成立.请你给出尽可能多的答案. [分析与参考答案] 因为在数字之间只能填加号或减号.我们考虑到9+8+-+1的和为45.45比21大24.那么我们可以在一些数前面填上减号.每填一个减号就使和减少这个数的2倍.所以我们只要将这些数和为12的前面分别填上减号即可.(但因为9的前面不能填减号).应该排除.于是12可以表示为以下一些数的和:,,,,, 答案如下: 9-8+7+6+5-4+3+2+1=21. 9+8-7+6-5+4+3+2+1=21. 9-8+7+6+5+4-3+2-1=21. 9+8-7+6+5-4+3+2-1=21. 9+8-7+6+5+4-3-2+1=21. 9+8+7-6-5+4+3+2-1=21. 9+8+7-6+5-4+3-2+1=21. 9+8+7+6-5-4-3+2+1=21. 9+8+7-6+5+4-3-2-1=21. 9+8+7+6-5-4+3-2-1=21. 查看更多

 

题目列表(包括答案和解析)

计算(
5
8
+
1
2
3
4
的结果为
1
1
2
1
1
2

查看答案和解析>>

728÷34的结果是(  )

查看答案和解析>>

叶序现象与斐波那契数列

  你吃过菠萝么?仔细观察菠萝果实的排列状况,就会发现它们形成一种螺旋结构。使人惊异的是,这种排列的现象在植物的叶、鳞片、花等部分,几乎到处可见。

  再进一步研究一下这些排列的状况,它们通常是以顺时针方向或逆时针方向螺旋形层层排列的。如果数一下其中顺时针和逆时针排列的层数,就可发现这两个数是位于斐波那契数列中相邻的两个数。

  什么是斐波那契数列?斐波那契(1170-1240)是一位意大利的数学家。他在所写的《算盘书》一书中,提出了下面的问题。

  “有小兔子一对,如果它们第二个月成年,第三个月生下一对小兔,以后,每月生产小兔一对,而所生的小兔亦在第二个月成年,第三个月生产另一对小兔,此后也每个月生一对小兔。则一年后共有多少对兔子?(假设每产一对兔子必为一雌一雄,而所有兔子都可以相互交配,并且没有死亡。)

  分析:

  这样推算下去,每个月所生的兔子数可以排成下面的数列:

  1123581321345589144……

  我们把这一列数称为斐波那契数列。研究一下这一列数的规律,从第三项起每一个数都是排在它前面两个数的和。如

  2=113=125=238=3513=5821=813,…

  斐波那契数列可以无限地写下去。设表示其中的第n项,那么

  

  比如,我们上面排出的第11项是89,第12项是144,那么第13项应该是

  

以下各项依序是

  

  

  

  …   …    …

  生物学家研究了花序中小花排列的螺旋数,一般顺时针方向为21,逆时针方向为34,恰恰是斐波那契数列中的。又如向日葵花序中小花或籽粒的排列,顺时针螺旋数与逆时针螺旋数之比一般是1221()3455()89144(),在一些大型样本中,这个比值甚至为144233()。同样,生物学家研究了各种菠萝球形花的鳞片顺、逆时针的螺旋数,一般总是落在斐波那契数列35813相邻的两数中。

  为什么不同的植物都具有类似的螺旋?为什么这些螺旋圈数总是相邻的斐波那契数?兔子的繁衍与植物的花序之间为什么会有这样的联系,这些问题至今尚未得到令人满意的解答。目前,科学家们一般认为,对植物来说,斐波那契叶序是最节约能量的。

查看答案和解析>>

细心填写。

1.□÷△=12……25,△最小是(  );△÷21=19……19,△=(   )。

2.如果被除数乘100,要使商不变,除数应该(    )。

3.计算182÷21时,可以将182看成(    ),将21看成(    ),估算结果为(   )。

4.两个数的商是40,如果被除数、除数都扩大为原来的15倍,那么商是(  )。

5.□23÷23,要使商是一位数,□里最大能填(  );要使商是两位数,□里最小能填(  )。

查看答案和解析>>

叶序现象与斐波那契数列

  你吃过菠萝么?仔细观察菠萝果实的排列状况,就会发现它们形成一种螺旋结构。使人惊异的是,这种排列的现象在植物的叶、鳞片、花等部分,几乎到处可见。

  再进一步研究一下这些排列的状况,它们通常是以顺时针方向或逆时针方向螺旋形层层排列的。如果数一下其中顺时针和逆时针排列的层数,就可发现这两个数是位于斐波那契数列中相邻的两个数。

  什么是斐波那契数列?斐波那契(1170-1240)是一位意大利的数学家。他在所写的《算盘书》一书中,提出了下面的问题。

  “有小兔子一对,如果它们第二个月成年,第三个月生下一对小兔,以后,每月生产小兔一对,而所生的小兔亦在第二个月成年,第三个月生产另一对小兔,此后也每个月生一对小兔。则一年后共有多少对兔子?(假设每产一对兔子必为一雌一雄,而所有兔子都可以相互交配,并且没有死亡。)

  分析:

  这样推算下去,每个月所生的兔子数可以排成下面的数列:

  1123581321345589144……

  我们把这一列数称为斐波那契数列。研究一下这一列数的规律,从第三项起每一个数都是排在它前面两个数的和。如

  2=113=125=238=3513=5821=813,…

  斐波那契数列可以无限地写下去。设表示其中的第n项,那么

  

  比如,我们上面排出的第11项是89,第12项是144,那么第13项应该是

  

以下各项依序是

  

  

  

  …   …    …

  生物学家研究了花序中小花排列的螺旋数,一般顺时针方向为21,逆时针方向为34,恰恰是斐波那契数列中的。又如向日葵花序中小花或籽粒的排列,顺时针螺旋数与逆时针螺旋数之比一般是1221()3455()89144(),在一些大型样本中,这个比值甚至为144233()。同样,生物学家研究了各种菠萝球形花的鳞片顺、逆时针的螺旋数,一般总是落在斐波那契数列35813相邻的两数中。

  为什么不同的植物都具有类似的螺旋?为什么这些螺旋圈数总是相邻的斐波那契数?兔子的繁衍与植物的花序之间为什么会有这样的联系,这些问题至今尚未得到令人满意的解答。目前,科学家们一般认为,对植物来说,斐波那契叶序是最节约能量的。

查看答案和解析>>


同步练习册答案