将连续的奇数1,3,5,7,…,排成如下图的数表,用图中所示的十字框可任意框出5个数.
【探究规律一】:设十字框中间的奇数为a,则框中五个奇数之和用含a的代数式表示为
5a
5a
.
【结论】:这说明能被十字框框中的五个奇数之和一定是自然数p的奇数倍,这个自然数p是
5
5
.
【探究规律二】:落在十字框中间且又是第二列的奇数是15,27,39,51…则这一列数可以用代数式表示为12m+3(m为正整数),同样,落在十字框中间且又是第三列,第四列的奇数分别可表示为
12m+5,13m+7
12m+5,13m+7
.
【运用规律】:
(1)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是
1025
1025
;这个奇数落在从左往右第
3
3
列.
(2)被十字框框中的五个奇数之和可能是485吗?可能是3045吗?说说你的理由.