任意画3条直线.则交点的个数是 (A)1个 (B)1个或3个 (C)1个或2个或3个 (D)0个或1个或2个或3个 查看更多

 

题目列表(包括答案和解析)

任意画3条直线,则交点的个数是
[     ]

A.1个
B.1个或3个
C.1个或2个或3个
D.0个或1个或2个或3个

查看答案和解析>>

我们给出如下定义:如图①,平面内两条直线l1、l2相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线l1和l2的距离(P≥0,q≥0),称有序非负实数对[p,q]是点M的距离坐标.
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线l1的关系式为y=x,直线l2的关系式为,M是平面直角坐标系内的点.
(1)若p=q=0,求距离坐标为[0,0]时,点M的坐标;
(2)若q=0,且p+q=m(m>0),利用图②,在第一象限内,求距离坐标为[p,q]时,点M的坐标;
(3)若,则坐标平面内距离坐标为[p,q]时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法).

查看答案和解析>>

我们给出如下定义:如图①,平面内两条直线l1、l2相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线l1和l2的距离(P≥0,q≥0),称有序非负实数对[p,q]是点M的距离坐标.
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线l1的关系式为y=x,直线l2的关系式为数学公式,M是平面直角坐标系内的点.
(1)若p=q=0,求距离坐标为[0,0]时,点M的坐标;
(2)若q=0,且p+q=m(m>0),利用图②,在第一象限内,求距离坐标为[p,q]时,点M的坐标;
(3)若数学公式,则坐标平面内距离坐标为[p,q]时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法).

查看答案和解析>>

四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.
(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)
①当四边形的对角线互相垂直且任何一条对角线不平分另一条对角线或者对角线互相平分且不垂直时,准等距点的个数为
0
0
个;
②当四边形的对角线既不垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为
1
1
个;
③当四边形的对角线既不垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为
2
2
个;
④当四边形的对角线互相垂直且至少有一条对角线平分另一条对角线时,准等距点有
无数
无数
个(注意点P不能画在对角线的中点上).

查看答案和解析>>

四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.
(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)
①当四边形的对角线互相垂直且任何一条对角线不平分另一条对角线或者对角线互相平分且不垂直时,准等距点的个数为______个;
②当四边形的对角线既不垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为______个;
③当四边形的对角线既不垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为______个;
④当四边形的对角线互相垂直且至少有一条对角线平分另一条对角线时,准等距点有______个(注意点P不能画在对角线的中点上).

查看答案和解析>>


同步练习册答案