如图. (1)如果∠2=∠3.那么 ∥ .理由是 , (2)如果∠3=∠4.那么 ∥ .理由是 , (3)如果∠1与∠2满足条件 时.∥. 理由是 , b 16.已知∠α为锐角.则它的补角与它的余角的差为 , 第15题图 17.已知..的值为 , 查看更多

 

题目列表(包括答案和解析)

如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.

(1)求证:CE=BD;

(2)如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数:

(3)如果当点A在直线BC的上方变化位置,且保持∠ACB是锐角,那么∠BOC的度数是否会发生变化?若变化,请直接写出变化的结论,不需说明理由;若不变化,请直接写明结论.

 

查看答案和解析>>

如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.

(1)求证:CE=BD;
(2)如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数:
(3)如果当点A在直线BC的上方变化位置,且保持∠ACB是锐角,那么∠BOC的度数是否会发生变化?若变化,请直接写出变化的结论,不需说明理由;若不变化,请直接写明结论.

查看答案和解析>>

如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:

  ⑴同时自由转动转盘A与B;

⑵转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜)。

你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

                                                                                                                                                                                                                                                                                                                       

查看答案和解析>>

如图,分别以△ABC的边AB、AC向外作等边△ABE和等边△ACD,直线BD与直线CE相交于点O.

    (1)求证:CE=BD;

    (2)如果当点A在直线BC的上方变化位置,且保持∠ABC和∠ACB都是锐角,那么∠BOC的度数是否会发生变化?若变化,请说明理由;若不变化,请求出∠BOC的度数:

(3)如果当点A在直线BC的上方变化位置,且保持∠ACB是锐角,那么∠BOC的度数是否会发生变化?若变化,请直接写出变化的结论,不需说明理由;若不变化,请直接写明结论.

查看答案和解析>>

如图,直线AB、CD被直线EF所截,

(1)

如果量得∠1=55°,∠2=55°,那么可以判定AB∥CD,理由是________;

(2)

如果量得∠3=125°,∠4=125°,也可以判定AB∥CD,理由是________.

查看答案和解析>>


同步练习册答案