分别作出锐角△ABC和钝角△A1B1C1的高. 查看更多

 

题目列表(包括答案和解析)

(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是
DE∥AC
DE∥AC

②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是
S1=S2
S1=S2


(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.

查看答案和解析>>

如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴对称的△A′B′C′和关于y轴对称的△A″B″C″.

查看答案和解析>>

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.

(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转。当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是     

②设△BDC的面积为S1,△AEC的面积为S2。则S1与S2的数量关系是     

(2)猜想论证

当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想。

(3)拓展探究

已知∠ABC=600,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF =S△BDC,请直接写出相应的BF的长

 

查看答案和解析>>

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90º,∠B=∠E=30º.

(1)操作发现

如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时,填空:

线段DE与AC的位置关系是         

设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是          ,证明你的结论;

猜想论证

当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AE中BC,CE边上的高,请你证明小明的猜想.

 

 

查看答案和解析>>

如图1,将两个完全相同的三角形纸片ABCDEC重合放置,其中∠C=90°,∠B=∠E=30°.

(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:

①线段DEAC的位置关系是   

②设△BDC的面积为S1,△AEC的面积为S2,那么S1S2之间的数量关系是   

(2)猜想论证

当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1S2的数量关系仍然成立,并尝试分别作出了△BDC和△AECBCCE边上的高,请你证明小明的猜想;

 


(3)拓展探究

       已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//ABBC于点E(如图4).

若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长.

查看答案和解析>>


同步练习册答案