易证⊿ABC≌⊿ABCD .∴AC=AD 查看更多

 

题目列表(包括答案和解析)

探究问题

(1)阅读理解:

①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PAPBPC的值为△ABC的费马距离.

②如图2,若四边形ABCD的四个顶点在同一个圆上,则有AB·CDBC·ADAC·BD.此为托勒密定理.

(2)知识迁移:

①请你利用托勒密定理,解决如下问题:

如图3,已知点P为等边△ABC外接圆的弧BC上任意一点.求证:PBPCPA

②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120º)的费马点和费马距离的方法:

第一步:如图4,在△ABC的外部以BC为边长作等边△BCD及其外接圆;

第二步:在弧BC上取一点P0,连接P0AP0BP0CP0D

易知P0AP0BP0CP0A+(P0BP0C)=P0A   

第三步:请你根据(1)①中定义,在图4中找出△ABC的费马点P,线段   的长度即为△ABC的费马距离.

(3)知识应用:

2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难.为解决老百姓饮水问题,解放军某部到云南某地打井取水.

已知三村庄ABC构成了如图5所示的△ABC(其中∠A、∠B、∠C均小于120º),现选取一点P打水井,使水井P到三村庄ABC所铺设的输水管总长度最小.求输水管总长度的最小值.

查看答案和解析>>

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据______,易证△AFG≌______,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系______时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。

(1)思路梳理

∵AB=CD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。

∵∠ADC=∠B=90°,

∴∠FDG=180°,点F、D、G共线。

根据    ,易证△AFG≌    ,得EF=BE+DF。

(2)类比引申

如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系    时,仍有EF=BE+DF。

(3)联想拓展

如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

 

查看答案和解析>>

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线。
根据    ,易证△AFG≌    ,得EF=BE+DF。
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系    时,仍有EF=BE+DF。
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

查看答案和解析>>

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

原题:图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理

∵AB=CD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.

∵∠ADC=∠B=90°,

∴∠FDG=180°,点F、D、G共线.

根据________,易证△AFG≌________,得EF=BE+DF.

(2)类比引申

图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系________时,仍有EF=BE+DF.

(3)联想拓展

图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>


同步练习册答案