题目列表(包括答案和解析)
1 | 4 |
1 |
4 |
观察是思考的“外壳”,要想思考得好,一定要善于观察.数学家在发现或解决问题时往往首先依赖于他对若干现象的观察--通过观察,如果发现某种值得注意的规律,就对它进行研究,并力图从中发现某种结论,去解释或描述这种模型,以求问题的顺利解决.例如,如果让你用任意方法去切一块圆饼,只要通过同一点不超过两刀,那么最多能得到几块?
自然,我们用不着特地去买一块饼来,只要在纸上画一些圆就行了.我们对各圆进行不同次数的切割,并在表中记录结果,得到:
我们仔细考查一下这张表,看看能否找到其中的规律.从记录上看,增加的块数分别是自然数1,2,3.切割次数也分别是1,2,3.这种规律是否继续有效呢?让我们再多试几次,并记录数据,得到:
现在的增加数分别是1,2,3,4,5,可见规律继续有效.这种规律使我们预测到:切割6次得22块,切割7次得29块.并进一步能使我们预测切割任意次所得的块数.
想一想:切割8次、9次将分别得到多少块?
在学习轴对称的时候,老师让同学们思考课本中的探究题。
如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?
聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:
①作点B关于直线l的对称点B′.
②连接AB′交直线l于点P,则点P为所求.
请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.
(1)在图中作出点P(保留作图痕迹,不写作法).
(2)请直接写出△PDE周长的最小值:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com