题目列表(包括答案和解析)
解二元一次方程组的基本思想是( ).
A、代入法 B、加减法
C、消元,化二元为一元 D、由一个未知数的值求另一个未知数的值
解方程组
解:由①,得
y=7-2x.③把③代入②,得
3x+2(7-2x)=11,x=3.把
x=3代入③,得y=7-2×3,y=1.所以
上面解二元一次方程组的基本思想是“消元”,也就是要消去其中一个未知数,把二元一次方程组转化成一元一次方程.这里的消元方法是,从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做
________消元法,简称________.我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”.
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.
问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.
(1)把一个正方形分割成9个小正方形.
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形.
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形.
(2)把一个正方形分割成10个小正方形.
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形.
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)
(4)把一个正方形分割成n(n≥9)个小正方形.
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n(n≥9)个小正方形.
从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图).
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图).
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)
(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com