如图.已知⊿ABC.作⊿ABC关于直线AD的对称图形. 查看更多

 

题目列表(包括答案和解析)

如图,已知AD是△ABC的中线,∠ADC=45°,把△ABC沿AD对折,点C落在点E的位置,连接BE,若BC=6cm。

(1)求BE的长;

(2)当AD=4cm时,求四边形BDAE的面积。

【解析】(1)由折叠可知:△ADC≌△ADE,∠EDC=2∠ADC=90°,ED=DC,又BD=DC,△BDE是等腰直角三角形,可求BE长;

(2)由(1)知,∠BED=45°,∠EDA=45°,∴四边形BDAE是梯形,已知上底AD=4,下底BE=3 2,为求梯形高,过D作DF⊥BE于点F,DF实际上就是等腰直角三角形BDE斜边上的高,可求长度.

 

查看答案和解析>>

如图,已知线段a和h,
求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h,
要求:尺规作图,不写作法,保留作图痕迹。

查看答案和解析>>

如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h。张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC,△ABC为所求的等腰三角形。上述作法的四个步骤中,有错误的一步你认为是

[     ]

A、(1)
B、(2)
C、(3)
D、(4)

查看答案和解析>>

如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h。张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC,△ABC为所求的等腰三角形。上述作法的四个步骤中,有错误的一步你认为是
[     ]
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

如图,在平面直角坐标系xoy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上。已知|OA|∶|OB|=1∶5,|OB|=|OC|,△ABC的面积,抛物线经过 A、B、C三点。
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案