如图4所示,在△ABC中,AB=AC, 则多边形的边数是 ,它的外角和是 . 查看更多

 

题目列表(包括答案和解析)

如图所示,在Rt△ABC中,∠A=90°AB=3 cm,AC=4 cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°到△DEF,则旋转前后两个直角三角形重叠部分的面积是多少?

查看答案和解析>>

(2006,遂宁)如图,把正方形ACFG与Rt△ACB按如图(甲)所示重叠在一起,其中AC=2,∠BAC=60°,若把Rt△ACB绕直角顶点C按顺时针方向旋转,使斜边AB恰好经过正方形ACFG的顶点F,得AB分别与相交于点DE,如图(乙)所示.

(1)△ABC至少旋转多少度才能得到?说明理由;

(2)求△ABC重叠部分(即四边形CDEF)的面积.(若取近似值,则精确到0.1)

查看答案和解析>>

已知:在四边形ABCD中,AB=DC,AC=DB,AD≠BC。求证:四边形ABCD是等腰梯形。

下面是某同学证明这道题的过程:

证明:过D作DE∥AB,交BC于E,如图19-3-10所示,则∠ABC=∠1。①

∵AB=DC,AC=DB,BC=CB,

∴△ABC≌△DCB,②

∴∠ABC=∠DCB,③

∴∠1=∠DCB,④

∴AB=DC=DE,⑤

∴四边形ABED是平行四边形,⑥

∴AD∥BC,⑦

BE=AD,⑧

又∵AD≠BC,∴BE≠B,

∴点E,C是不同的点,DC不平行于AB。⑨

∵AB=DC,

∴四边形ABCD是等腰梯形。⑩

阅读后填空:

(1)上面的证明过程是否有错误?如有,错在第几步?答:_________;

(2)作DE∥AB的目的是__________;

(3)有人认为第⑨步是多余的,你认为它是否多余?为什么?_________;

(4)判断四边形ABED是平行四边形的依据为___________;

(5)判断四这形ABCD是等腰梯形的依据为_____________;

(6)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?

答:_________________。

查看答案和解析>>

探究问题

(1)阅读理解:

①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PAPBPC的值为△ABC的费马距离.

②如图2,若四边形ABCD的四个顶点在同一个圆上,则有AB·CDBC·ADAC·BD.此为托勒密定理.

(2)知识迁移:

①请你利用托勒密定理,解决如下问题:

如图3,已知点P为等边△ABC外接圆的弧BC上任意一点.求证:PBPCPA

②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120º)的费马点和费马距离的方法:

第一步:如图4,在△ABC的外部以BC为边长作等边△BCD及其外接圆;

第二步:在弧BC上取一点P0,连接P0AP0BP0CP0D

易知P0AP0BP0CP0A+(P0BP0C)=P0A   

第三步:请你根据(1)①中定义,在图4中找出△ABC的费马点P,线段   的长度即为△ABC的费马距离.

(3)知识应用:

2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难.为解决老百姓饮水问题,解放军某部到云南某地打井取水.

已知三村庄ABC构成了如图5所示的△ABC(其中∠A、∠B、∠C均小于120º),现选取一点P打水井,使水井P到三村庄ABC所铺设的输水管总长度最小.求输水管总长度的最小值.

查看答案和解析>>

阅读材料,解答问题.
已知:锐角△ABC,如图,求作:正方形DEFG,使D、E落在BC边上,F、G分别落在AC、AB边上.
作法:(1)画一个有三个顶点落在△ABC两边上的正方形D1、E1、F1、G1(如图所示);
(2)连接BF,并延长交AC于点F;
(3)过点F作EF⊥BC于点E;
(4)过F作FG∥BC,交AB于点G;
(5)过点G作GD⊥BC于点D;则四边形DEFG即为所求作的正方形.
问题:(1)说明上述所求作四边形DEFG为正方形的理由.
(2)在△ABC中,如果BC=120,BC边上的高为80,求上述正方形DEFG的边长.
(3)若把(2)中的正方形DEFG改为矩形DEFG,且GF=
12
DG,其他条件不变,此时,GF是多少?

查看答案和解析>>


同步练习册答案