题目列表(包括答案和解析)
(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线的大致图象。
(2)若点(,)在抛物线上,且0≤≤4,试写出的取值范围。
(3)设平行于轴的直线=交线段BM于点P(点P能与点M重合,不能与点B重合)交轴于点Q,四边形AQPC的面积为。
①求关于的函数关系式以及自变量的取值范围;
②求取得最大值时,点P的坐标;
③设四边形OBMC的面积为,判断是否存在点P,使得=,若存在,求出点P的坐标;若不存在,请说明理由。
如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F
两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于
点B。抛物线y=ax2+bx+c经过P、B、M三点。
1.(1)求该抛物线的函数表达式;(3分)
2.(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的
横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(4分)
3.(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,
并说明理由。(3分)
如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F
两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于
点B。抛物线y=ax2+bx+c经过P、B、M三点。
【小题1】(1)求该抛物线的函数表达式;(3分)
【小题2】(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的
横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(4分)
【小题3】(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,
并说明理由。(3分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com