1. 根据要求列式计算:若规定收入为正.支出为负.求最终盈余或透支情况: (1) 收入51元.支出27元. (2) 支出51元.收入27元. (3) 收入51元.收入27元. (4) 支出51元.支出27元. 利用加法法则(请将学习目标中法则添加完整)根据课本例1完成尝试题二: 查看更多

 

题目列表(包括答案和解析)

根据语句列式计算:
(1)-6加上-3与2的积:
-6+(-3)×2=-12
-6+(-3)×2=-12

(2)-2与3的和除以-3:
(-2+3)÷(-3)=-
1
3
(-2+3)÷(-3)=-
1
3

(3)-3与2的平方的差:
-3-22=-7
-3-22=-7

查看答案和解析>>

(2012•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:
探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的三个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:
一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;
另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.
显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点可把△ABC分割成
7
7
个互不重叠的小三角形,并在图④中画出一种分割示意图.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个顶点可把△ABC分割成
(2m+1)
(2m+1)
个互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个顶点可把四边形分割成
(2m+2)
(2m+2)
个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个顶点可把△ABC分割成
(2m+n-2)
(2m+n-2)
个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)

查看答案和解析>>

某商场打出了促销广告如下表,对顾客实行优惠.
优惠条件 一次购物不超过200元 一次购物超过200元,但不超过500元 一次购物超过500元
优惠方法 不予优惠 按物价给予九折优惠 其中500元按九折优惠,超过500元部分按八折优惠.
(1)某人在此商场两次购物分别付款168元和423元,则他第一次付款168元,可购标价总值是
168
168
元的货物;
第二次付款423元,可购标价总值是
470
470
元的货物.请列式计算:若他把两次购得的货物合在一次买,需要付多少钱?
(2)如果字母x(x>200)表示某顾客在此商场一次购物的货物标价总值,那么所付款数该如何用x的代数式表示呢?

查看答案和解析>>

问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶

点,可把原n边形分割成多少个互不重叠的小三角形?

问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:

探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互

不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.

探究二:以△ABC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个

互不重叠的小三角形?

在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种

情况:

一种情况,点Q在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;

另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③.

显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.

探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点,可把△ABC分割成     

互不重叠的小三角形,并在图④中画出一种分割示意图.

探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成       

互不重叠的小三角形.

探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成

        个互不重叠的小三角形.

问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成

        个互不重叠的小三角形.

实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互

不重叠的小三角形?(要求列式计算)

 

查看答案和解析>>

根据语句列式计算:
⑴-6加上-3与2的积:       ;⑵-2与3的和除以-3:         ;⑶-3与2的平方的差:          

查看答案和解析>>


同步练习册答案