乘法公式的探究及应用. (1)如左图.可以求出阴影部分的面积是 , (2)如右图.若将阴影部分裁剪下来.重新拼成一个矩形.它的宽是 .长是 .面积是 (3)比较左.右两图的阴影部分面积.可以得到乘法公式 (4)运用你所得到的公式.计算下列各题: ① ② 查看更多

 

题目列表(包括答案和解析)

29、乘法公式的探究及应用
(1)如图1,可以求出阴影部分的面积是
a2-b2
(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是
a-b
,长是
a+b
,面积是
(a+b)(a-b)
(写成多项式乘法的形式);

(3)比较图1、图2阴影部分的面积,可以得到公式
(a+b)(a-b)=a2-b2

(4)运用你所得到的公式,计算下列各题:
①10.2×9.8,②(2m+n-p)(2m-n+p).

查看答案和解析>>

乘法公式的探究及应用.
(1)如图1,可以求出阴影部分的面积是
a2-b2
a2-b2
(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是
a-b
a-b
,长是
a+b
a+b
,面积是
(a+b)(a-b)
(a+b)(a-b)
(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2
(用式子表达)
(4)运用你所得到的公式,计算:10.3×9.7(x+2y-3)(x-2y+3).

查看答案和解析>>

23、乘法公式的探究及应用.
(1)如左图,可以求出阴影部分的面积是
a2-b2
(写成两数平方差的形式);   
(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是
a-b
,长是
a+b
,面积是
(a+b)(a-b)
.(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式
(a+b)(a-b)=a2-b2
.(用式子表达)
(4)运用你所得到的公式,计算下列各题:
①10.3×9.7
②(2m+n-p)(2m-n+p)

查看答案和解析>>

乘法公式的探究及应用:
探究问题:
如图1是一张长方形纸条,将其剪成长短两条后刚好能拼成图2,如图所示.
(1)则图1长方形纸条的面积可表示为
(a+b)(a-b)
(a+b)(a-b)
(写成多项式乘法的形式).

(2)拼成的图2中阴影部分面积可表示为
a2-b2
a2-b2
(写成两数平方差的形式).

(3)比较两图的阴影部分面积,可以得到乘法公式
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2

结论运用:
(4)应用所得的公式计算:(2x+y)(2x-y)=
4x2-y2
4x2-y2
(
2
3
m-
1
2
)(-
2
3
m-
1
2
)
=
1
4
-
4
9
m2
1
4
-
4
9
m2

拓展运用:
(5)计算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20122
)(1-
1
20132
)

查看答案和解析>>

乘法公式的探究及应用.
(1)将左图阴影部分裁剪下来,重新拼成一个长方形(右图所示),那么这个长方形的宽是
a-b
a-b
,长是
a+b
a+b
,面积是
a2-b2
a2-b2

(2)比较左、右两图的阴影部分面积,可以得到乘法公式
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2
.(用式子表达)

(3)运用你所得到的公式,计算(2m+n-p)(2m-n+p)

查看答案和解析>>


同步练习册答案