如图,直线与x轴、y轴交于A、B两点,且OA=OB=1,点P是反比例函数
y=图象在第一象限的分支上的任意一点,P点坐标为(a,b),由点P分别向x轴,y轴作垂线PM、PN,垂足分别为M、N;PM、PN分别与直线交于点E,点F.
(1)设交点E、F都在线段AB上,分别求出点E、点F的坐标;(用含a的代数式表示)
(2)△AOF与△BOE是否一定相似?如果一定相似,请予以证明;如果不一定相似或一定不相似,请简短说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角和它的大小,并证明你的结论;
(4)在双曲线
y=上是否存在点P,使点P到直线AB的距离最短的点,若存在,请求出点P的坐标及最短距离;若不存在,说明理由