27.要想说明结论:“在一个梯形中.如果同一底边上的两个内角相等.那么另一条底边的两个内角也相等 .以下有三种方法.先看方法一: 如图1:因为四边形ABCD是梯形. 所以AB∥CD. 所以∠A+∠D=180°.∠B+∠C=180°.(两直线平行.同旁内角互补) 又因为∠A=∠B. 所以∠C=∠D. 方法二和方法三如图2.图3所示用了作垂线的方法.请你根据图示.选择其中一种方法说明梯形中如果∠DAB=∠ABC.那么∠ADC=∠BCD. 查看更多

 

题目列表(包括答案和解析)

22、要想说明结论:“在一个梯形中,如果同一底边上的两个内角相等,那么另一条底边的两个内角也相等”,以下有三种方法,先看方法一:
如图:

因为四边形ABCD是梯形,
所以AB∥CD,(梯形的定义)
所以∠A+∠D=180°,∠B+∠C=180度.(两直线平行,同旁内角互补)
又因为∠A=∠B,(已知)
所以∠C=∠D.
方法二和方法三如图所示

用了作垂线的方法,请你根据图示,选择其中一种方法说明梯形中如果∠DAB=∠ABC,那么∠ADC=∠BCD.(只选一种方法即可)

查看答案和解析>>

要想说明结论:“在一个梯形中,如果同一底边上的两个内角相等,那么另一条底边的两个内角也相等”,以下有三种方法,先看方法一:
如图:

因为四边形ABCD是梯形,
所以AB∥CD,(梯形的定义)
所以∠A+∠D=180°,∠B+∠C=180度.(两直线平行,同旁内角互补)
又因为∠A=∠B,(已知)
所以∠C=∠D.
方法二和方法三如图所示

用了作垂线的方法,请你根据图示,选择其中一种方法说明梯形中如果∠DAB=∠ABC,那么∠ADC=∠BCD.(只选一种方法即可)

查看答案和解析>>

杨老师在上四边形时给学生出了这样一个题.如图,若在等腰梯形ABCD中,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点时.提出以下问题:
(1)在不添加其它线段的前提下,图中有哪几对全等三角形?请直接写出结论;
(2)猜想四边形MENF是何种的四边形?并加以说明;
(3)连接MN,当MN与BC有怎样的数量关系时,四边形MENF是正方形?(直接写出关系式,不需要说明理由)

查看答案和解析>>

杨老师在上四边形时给学生出了这样一个题.如图,若在等腰梯形ABCD中,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点时.提出以下问题:
(1)在不添加其它线段的前提下,图中有哪几对全等三角形?请直接写出结论;
(2)猜想四边形MENF是何种的四边形?并加以说明;
(3)连接MN,当MN与BC有怎样的数量关系时,四边形MENF是正方形?(直接写出关系式,不需要说明理由)

查看答案和解析>>

杨老师在上四边形时给学生出了这样一个题.如图,若在等腰梯形ABCD中,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点时.提出以下问题:
(1)在不添加其它线段的前提下,图中有哪几对全等三角形?请直接写出结论;
(2)猜想四边形MENF是何种的四边形?并加以说明;
(3)连接MN,当MN与BC有怎样的数量关系时,四边形MENF是正方形?(直接写出关系式,不需要说明理由)

查看答案和解析>>


同步练习册答案