如果一个多项式的次数是6.则这个多项式的任何一项的次数都 不大于6 不小于6 查看更多

 

题目列表(包括答案和解析)

如果一个多项式的次数是6,则这个多项式的任何一项的次数都 ()

A.小于6        B.等于6      C.不大于6      D.不小于6

查看答案和解析>>

如果一个多项式的次数是6,则这个多项式的任何一项的次数都(    ) 

A.小于6                        B.等于6 

C.不大于6                      D.不小于6 

查看答案和解析>>

计算多项式的乘法时,有这样一个结果:
(x+p)(x+q)=x2+mx+n
则m=(p+q),n=pq
这说明如果一个二次三项式的常数项分成p·q,而p+q恰好是系数,那么这个x2+mx+n二次三项式就可以分解成x2+mx+n=(x+p)(x+q),通过上面的方法,分解下列二次三项式:
(1)x2+5x+6; (2)x2-5x+6;(3)x2-5x-6;(4)x2+5x-6;
(5)x2-x-6;     (6)x2+x-6; (7)x2-7x+6;(8)x2+7x+6。

查看答案和解析>>

贾宪三角如图,最初于11世纪被发现,原图载于我国北宋时期数学家贾宪的著作中.这一成果比国外领先600年!这个三角形的构造法则是:两腰都是1,其余每个数为其上方左右两数之和.它给出(a+b)n(n为正整数)展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2的展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数;等等.
作业宝
(1)请根据贾宪三角直接写出(a+b)4、(a+b)5的展开式:(a+b)4=______.(a+b)5=______.
(2)请用多项式乘法或所学的乘法公式验证你写出的(a+b)4的结果.

查看答案和解析>>

为了解某校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).

(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学;
(4)为了鼓励“低碳生活”,学校为随机抽到的步行或骑自行车上学的学生设计了一个摸奖游戏,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,随机地从四个小球中摸出一球然后放回,再随机地摸出一球,若第二次摸出的小球标有的数字比第一次摸出的小球标有的数字大,则有小礼物赠送,问获得小礼物的概率是多少(用树状图或列表说明)?

查看答案和解析>>


同步练习册答案