如图10-4-8所示.A.B.C.D四幅图案中.能通过平移图案 查看更多

 

题目列表(包括答案和解析)

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?
精英家教网

查看答案和解析>>

聪明好学的小敏查阅有关资料发现:用不过圆锥顶点且平行于一条母线的平面截圆锥所得的截面为抛物面,即图(1)中曲线CFD为抛物线的一部分.圆锥体SAB的母线长为10,侧面积为50π,圆锥的截面CFD交母线SB于F,交底面圆P于C、D,AB⊥CD,垂足为O,OF∥SA且OF⊥CD,OP=4.
(1)求底面圆的半径AP的长及圆锥侧面展开图的圆心角的度数;
(2)当以CD所在直线为x轴,OF所在的直线为y轴建立如图(2)所示的直角坐标系.求过C、F、D三点的抛物线的函数关系式;
(3)在抛物面CFD中能否截取长为5.6,宽为2.2的矩形?请说明理由.
精英家教网

查看答案和解析>>

(2013•高淳县二模)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.5米的正方形ABCD.点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的价格依次为每平方米30元、20元、10元.若将此种地砖按图(2)所示的形式铺设,则中间的阴影部分组成正方形EFGH.已知烧制该种地砖平均每块需加工费0.35元,若要CE长大于0.1米,且每块地砖的成本价为4元(成本价=材料费用+加工费用),则CE长应为多少米?

查看答案和解析>>

25、台州奉化一果农有一批经过挑选的橙子要包装出售,现随意挑选10个,橙子测量直径,数据分别为(单位:cm)7.9,7.8,8,7.9,8,8,7.9,7.9,7.8,7.8.橙子内包装模型的横截面如图(1),凹型为半圆形,半圆的直径为这批橙子大约平均值加0.2cm,现用纸箱作外包装,内包装嵌入纸箱内,每箱装一层,一层装5×4个如图(2)所示,纸箱的高度比内包装高5cm.
(1)估计这批橙子的平均直径大约是多少?
(2)设计纸箱(不加盖子)的长、宽、高各为多少?(数据保留整数,设计时长和宽比内包装各需加长0.5cm).
(3)加工成一只纸箱的硬纸板面积较合理需多少cm2,请给出一种方案.(不计接头重叠部分,盖子顶面用透明纸)

查看答案和解析>>

小张骑车往返于甲、乙两地,他距甲地的路程y(千米)与时间x(小时)的函数图象如图中折线OABCD所示.
(1)小张在路上停留了
 
小时,他从乙地返回时的速度为
 
千米/小时;
(2)求小张在图中BC段上距甲地的路程y1(千米)与时间x(小时)的函数解析式,并写出自变量x的取值范围;
(3)小王与小张同时从不同地点出发,按相同路线前往乙地,如果小王距甲地的路程y2(千米)与时间x(小时)的函数关系式y2=12x+10,图象为线段EF,那么他们第一次相遇时距出发多少小时?请写出你的计精英家教网算过程.

查看答案和解析>>


同步练习册答案