在等边△ABC中.BD⊥AC.垂足为D.延长BC到E.使CE=BC.连结D.E. (1)BD与DE有怎样的关系?请说明你的理由. (2)把BD改成什么条件.还能得到(1)中的结论? 查看更多

 

题目列表(包括答案和解析)

27、如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为
垂直
,数量关系为
相等

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.

查看答案和解析>>

22、如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.

1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.

查看答案和解析>>

如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.
1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.

查看答案和解析>>

如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.
1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
2、点K在线段BD上,且四边形AKNC为等腰梯形(ACKN,如图2).
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形
精英家教网
状,并说明理由.

查看答案和解析>>

阅读并填空:
如图:在△ABC中,AB=AC,AD⊥BC,垂足为点D,点E在AD上,点F在AD的延长线上,且CE∥BF,试说明DE=DF的理由.
解:因为AB=AC,AD⊥BC,
所以BD=
CD
CD
. (
等腰三角形底边上的高与底边上的中线、顶角的平分线重合
等腰三角形底边上的高与底边上的中线、顶角的平分线重合

因为CE∥BF,
所以
∠CEF
∠CEF
=
∠BFE
∠BFE
,∠EDC=∠BDF(对顶角相等)
在△BFD和△CED中,
所以△BFD≌△CED,(
AAS
AAS

从而DE=DF.(
全等三角形对应边相等
全等三角形对应边相等
).

查看答案和解析>>


同步练习册答案