如图1所示,下列说法不正确的是( )毛 A.点B到AC的垂线段是线段AB; B.点C到AB的垂线段是线段AC C.线段AD是点D到BC的垂线段; D.线段BD是点B到AD的垂线段 (3) 查看更多

 

题目列表(包括答案和解析)

 某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图7所示,但不完整的统计图.根据图示信息,解答下列问题:

(1)求被抽查学生人数及课外阅读量的众数;

(2)求扇形统计图汇总的值;

(3)将条形统计图补充完整;

(4)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?

查看答案和解析>>

精英家教网“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是
5
10
13
,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:S△ABC=3×3-
1
2
×3×1-
1
2
×2×1-
1
2
×3×2=
7
2

思维拓展:已知△ABC的边长分别为
5a
、2
2a
17a
(a>0)
,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.

查看答案和解析>>

问题背景:在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶精英家教网点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.
 

(2)画△DEF,DE、EF、DF三边的长分别为
2
8
10

①判断三角形的形状,说明理由.
②求这个三角形的面积.

查看答案和解析>>

在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
 

(2)若△DEF三边的长分别为
5
2
2
17
,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;
(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
精英家教网

查看答案和解析>>

在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
3.5
3.5

(2)若△DEF三边的长分别为
5
8
17
,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为
3
3

(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是
110
110
m2

查看答案和解析>>


同步练习册答案