下列各式中是整式的有( ) A.6个 B.5个 C.4个 D.3个 查看更多

 

题目列表(包括答案和解析)

下列说法中,正确的说法有(  )
①对角线互相垂直、平分且相等的四边形是正方形;
②一元二次方程x2-x-6=0的根是x1=-3,x2=-2;
③依次连接任意一个四边形各边中点所得的四边形是平行四边形;
④一元一次不等式2x+5<11的非负整数解有3个;
⑤在数据1,3,3,0,2,4,1;中,平均数是2,中位数是2.
A.1个B.2个C.3个D.4个

查看答案和解析>>

请同学们判断下列各式是否成立:

(1)=2;(2)=3;(3)=4;(4)=3

经过计算可知,(1)、(2)、(3)式是成立的;(4)式是不成立的.这说明在二次根式的化简运算中要特别注意,根号里面的数是不能轻易地放到根号外面来的.

细心的同学可能会想,什么情况下根号里面的数能放到根号外面来呢?(1)、(2)、(3)式的成立仅仅是巧合吗?其中会有什么规律吧?我们来分析一下前三个式子的运算过程:

(1)=2

(2)=3

(3)=4

通过把带分数化成假分数的分数运算和分子开方运算验证了这些式子是成立的.

我们再来观察前三个等式左边根号内分数的特点.在三个带分数2、3、4中:

(1)整数部分与分数部分的分子相等:

2=2,3=3,4=4;

(2)整数部分与分数部分的分母有下列关系:

3=22-1,8=32-1,15=42-1.

根据上面的分析和观察,我们不妨观察5+=5,式子=5是不是也成立?

=5

确实是成立的!

大胆地猜想一下,对于一般的形式a+(a为大于1的整数),式子

=a

还会成立吗?我们来验证一下:

=a

(a为大于1的整数).

太妙啦!我们的猜想是正确的.

那么,下列各式成立吗?

(1)=2;(2)=3;(3)=4;(4)=3

能不能由此得出下面的结论呢?

=a

同学们可能还会不满足,还会有更大胆的猜想!那就试试看吧.不要忘记,猜想成为真理,是要经过严格证明的.

查看答案和解析>>

(1)观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,第④个图中有          个三角形,……,根据这个规律可知第n个图中有           个三角形(用含正整数n的式子表示)。

(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在,请通过具体计算说明理由。

(3)在下图中,点B是线段AC的中点,DAC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3。试探索S1S2S3 之间的数量关系,并说明理由。

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的: 22×23=25,23×24=27,22×26=28,…
2m×2n=2m+n,…am×anam+n(mn都是正整数)。探索问题:
(1)比较下列各组数据的大小:
    , ②   , ③    ,  ④   ,…。
(2)请你根据上面的材料归纳出abc(ab>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.
(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。

比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的: 22×23=25,23×24=27,22×26=28,…

2m×2n=2m+n,…am×anam+n(mn都是正整数)。探索问题:

(1)比较下列各组数据的大小:

     ,  ②    ,  ③     ,   ④    ,…。

(2)请你根据上面的材料归纳出abc(ab>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.

(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;

 

查看答案和解析>>


同步练习册答案