题目列表(包括答案和解析)
20°5=20.5°.
从2开始,连续的偶数相加,它们的和的情况如下表:
加数m的个数 和(S)
1 ———————————→2=1×2
2 ————————→2+4=6=2×3
3 ——————→2+4+6=12=3×4
4 ————→2+4+6+8=20=4×5
5 ——→2+4+6+8+10=30=5×6
(1)按这个规律,当m=6时,和为_______;
(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:
__________________________________________.
(3)应用上述公式计算:
①2+4+6+…+200 ②202+204+206+…+300
(12')如图,某水库拦水坝的迎水坡AD的坡度i=3:7,坝顶宽8米,坝高6米, cosB=,求:
(1)背水坡BC的长。
(2)坝底宽AB。
(3)水坝截面的面积S。
先阅读下列材料,然后解答问题:
材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.
一般地,从n个不同元素中选取m个元素的排列数记作Anm,
Anm=n(n-1)(n-2)…(n-m+1)(m≤n).
例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.
材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.
一般地,从n个不同元素中选取m个元素的组合数记作Cnm,
Cnm= (m≤n).
例:从6个不同元素中选3个元素的组合数为:
C63==20.
问:(1)从7个人中选取4人排成一排,有多少种不同的排法?
(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?
从2开始,连续的偶数相加,它们的和的情况如下表:
加数m的个数 和(S)
1 ———————————→2=1×2
2 ————————→2+4=6=2×3
3 ——————→2+4+6=12=3×4
4 ————→2+4+6+8=20=4×5
5 ——→2+4+6+8+10=30=5×6
(1)按这个规律,当m=6时,和为_______;
(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:
__________________________________________.
(3)应用上述公式计算:
①2+4+6+…+200 ②202+204+206+…+300
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com