18.(点拨:将一个点左右平移时.纵坐标不变.横坐标相应的减去或加上平移的距离.将一个点上下平移时.横坐标不变.纵坐标相应的加上或减去平移的距离) 查看更多

 

题目列表(包括答案和解析)

(2012•随州)在一次数学活动课上,老师出了一道题:
(1)解方程x2-2x-3=0
巡视后,老师发现同学们解此道题的方法有公式法、配方法和十字相乘法(分解因式法).接着,老师请大家用自己熟悉的方法解第二道题:
(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).
老师继续巡视,及时观察、点拨大家,再接着,老师将第二道题变式为第三道题:
(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数)
①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);
②若m≠0时,设此函数的图象与x轴的另一个交点为B.当△ABC为锐角三角形时,观察图象,直接写出m的取值范围.
请你也用自己熟悉的方法解上述三道题.

查看答案和解析>>

(2009•河西区二模)如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.
(1)求证:△BMD为等腰直角三角形.
(思路点拨:考虑M为EC的中点的作用,可以延长DM交BC于N,构造△CMN≌△EMD,于是ED=CN=DA,即可以证明△BND也是等腰直角三角形,且BM是等腰三角形底边的中线就可以了.)请你完成证明过程:
(2)将△ADE绕点A再逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.

查看答案和解析>>

28、阅读探究:
例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N、求证:AM=MN.
思路点拨:取的AB中点P,连接PM,易证△APM≌△MCQ从而AM=MN.
问题解决:
(1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.
①填空:当∠AMN=
90°
°时,AM=MN;
②证明①的结论.
(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)

查看答案和解析>>

(2013•桥西区模拟)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2
思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.
请你完成证明过程:
(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可.
如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.
思路点拨:
(1)由已知条件AB=AD,∠BAD=60°,可知:△ABD是
等边
等边
三角形;
(2)同理由已知条件∠BCD=120°得到∠DCE=
60°
60°
,且CE=CD,可知
△DCE是等边三角形
△DCE是等边三角形

(3)要证BC+DC=AC,可将问题转化为两条线段相等,即
AC
AC
=
BE
BE

(4)要证(3)中所填写的两条线段相等,可以先证明….请你完成证明过程:

查看答案和解析>>


同步练习册答案