13.若2m·2n·8=211.则m= . 查看更多

 

题目列表(包括答案和解析)

整体代入的思想是数学中一种十分重要的思想方法.当由已知的代数式中不能求出每个字母的值或求出的值比较繁琐时,往往通过对比已知条件和问题之间的联系,考虑在问题中把已知条件(或其变式)整体代入,从而使计算变得简洁.例如,若2m+3n=5,则4m+6n=2(2m+3n)=2×5=10.

解答下面的问题:

若x3-x-2=0,则的值是多少?

查看答案和解析>>

若2m=3,2n=4,则23m-2n等于(  )

A.1            B.           C.              D.

 

 

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的: 22×23=25,23×24=27,22×26=28,…
2m×2n=2m+n,…am×anam+n(mn都是正整数)。探索问题:
(1)比较下列各组数据的大小:
    , ②   , ③    ,  ④   ,…。
(2)请你根据上面的材料归纳出abc(ab>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.
(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。

比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的: 22×23=25,23×24=27,22×26=28,…

2m×2n=2m+n,…am×anam+n(mn都是正整数)。探索问题:

(1)比较下列各组数据的大小:

     ,  ②    ,  ③     ,   ④    ,…。

(2)请你根据上面的材料归纳出abc(ab>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.

(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;

 

查看答案和解析>>

图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形
【小题1】图②中的阴影部分的面积为                                         
【小题2】观察图②请你写出三个代数式(m+n)2、(m-n)2、mn之间的等量关系是
                          
【小题3】若x+y=5,xy=2,则(x-y)2         
【小题4】实际上有许多代数恒等式可以用图形的面积来表示.
如图③,它表示了                                         

【小题5】试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2
(此题6分)

查看答案和解析>>


同步练习册答案