试一试 ⑴ 在下面左图中.用阴影画出图形1通过图中虚线翻折访问的图形. ⑵ 在下面右图中.用阴影画出图形1绕图中的空心点旋转180°访问的图形. ⑶ 完成教科书P82页“数学实验室 实验3. 查看更多

 

题目列表(包括答案和解析)

请大家阅读下面两段材料,并解答问题:
材料1:我们知道在数轴上表示4和1的两点之间的距离为3,(如图)而|4-1|=3,所以在数轴上表示4和1的两点之间的距离为|4-1|.
精英家教网
再如在数轴上表示4和-2的两点之间的距离为6,(如图)
精英家教网
而|4-(-2)|=6,所以数轴上表示数4和-2的两点之间的距离为|4-(-2)|.
根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于|a-b|(如图)
精英家教网
材料2:如下左图所示大正方形的边长为a,小正方形的边长为b,则阴影部分的面积可表示为:a2-b2
精英家教网精英家教网
将上图中的左图重新拼接成右图,则阴影部分的面积可表示为(a+b)(a-b),由此可以得到等式:a2-b2=(a+b)(a-b),
阅读后思考:
(1)试一试,求在数轴上表示的数5
2
3
-4
1
4
的两点之间的距离为
 

(2)请用材料2公式计算:(49
8
9
2-(49
1
9
2=
 

(3)上述两段材料中,主要体现了数学中
 
的数学思想.

查看答案和解析>>

请大家阅读下面两段材料,并解答问题:材料1:我们知道在数轴上表示4和1的两点之间的距离为3,(如图)而|4﹣1|=3,所以在数轴上表示4和1的两点之间的距离为|4﹣1|.
再如在数轴上表示4和﹣2的两点之间的距离为6,(如图)
而|4﹣(﹣2)|=6,所以数轴上表示数4和﹣2的两点之间的距离为|4﹣(﹣2)|.根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于|a﹣b|(如图)
材料2:如下左图所示大正方形的边长为a,小正方形的边长为b,则阴影部分的面积可表示为:a2﹣b2
将上图中的左图重新拼接成右图,则阴影部分的面积可表示为(a+b)(a﹣b),由此可以得到等式:a2﹣b2=(a+b)(a﹣b),阅读后思考:
(1)试一试,求在数轴上表示的数的两点之间的距离为(    );
(2)请用材料2公式计算:(492﹣(492=(    );
(3)上述两段材料中,主要体现了数学中(    ).

查看答案和解析>>

请大家阅读下面两段材料,并解答问题:
材料1:我们知道在数轴上表示4和1的两点之间的距离为3,(如图)而|4-1|=3,所以在数轴上表示4和1的两点之间的距离为|4-1|.

再如在数轴上表示4和-2的两点之间的距离为6,(如图)

而|4-(-2)|=6,所以数轴上表示数4和-2的两点之间的距离为|4-(-2)|.
根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于|a-b|(如图)

材料2:如下左图所示大正方形的边长为a,小正方形的边长为b,则阴影部分的面积可表示为:a2-b2

将上图中的左图重新拼接成右图,则阴影部分的面积可表示为(a+b)(a-b),由此可以得到等式:a2-b2=(a+b)(a-b),
阅读后思考:
(1)试一试,求在数轴上表示的数数学公式数学公式的两点之间的距离为______;
(2)请用材料2公式计算:(49数学公式2-(49数学公式2=______;
(3)上述两段材料中,主要体现了数学中______的数学思想.

查看答案和解析>>

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×
12
ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?
精英家教网精英家教网

查看答案和解析>>

(1)完成下面的证明:
已知:如图1,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
求证:∠EGF=90°.
证明:∵HG∥AB,(已知) 
∴∠1=∠3. (
两直线平行,内错角相等
两直线平行,内错角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
两直线平行,内错角相等
两直线平行,内错角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
两直线平行,同旁内角互补
两直线平行,同旁内角互补

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分线定义
角平分线定义

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分线定义
角平分线定义

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代换
等量代换
).即∠EGF=90°.
(2)如图2,已知∠ACB=90°,那么∠A的余角是哪个角呢?答:
∠B
∠B

小明用三角尺在这个三角形中画了一条高CD(点D是垂足),得到图3,
①请你帮小明在图中画出这条高;
②在图中,小明通过仔细观察、认真思考,找出了三对余角,你能帮小明把它们写出来吗?答:a
∠ACD与∠BCD
∠ACD与∠BCD
;b
∠A与∠ACD
∠A与∠ACD
;c
∠B与∠BCD
∠B与∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明还发现了另外两对相等的角,请你也仔细地观察、认真地思考分析,试一试,能发现吗?把它们写出来,并请说明理由.
(3)在直角坐标系中,第一次将△OAB变换成OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为
(16,3)
(16,3)
,B4的坐标为
(32,0)
(32,0)

②按以上规律将△OAB进行n次变换得到△AnBn,则可知An的坐标为
(2n,3)
(2n,3)
,Bn的坐标为
(2n+1,0)
(2n+1,0)

③可发现变换的过程中A、A1、A2、…、An纵坐标均为
3
3

查看答案和解析>>


同步练习册答案