在梯形ABCD中,AD∥BC,AD=8cm,BC=2cm,AB=CD=6cm.动点P、Q同时从A点出发,点P沿线段AB→BC→CD的方向运动,速度为2cm/s;点Q沿线段AD的方向运动,速度为1cm/s.当P、Q其中一点先
到达终点D时,另一点也随之停止运动.设运动时间为t(s),△APQ的面积为S(cm
2).
(1)当点P在线段AB上运动时,是否存在某个t的值使∠CQP=60°?通过计算说明;
(2)当点P在CD上时,是否存在某个t的值使PQ=AQ?若存在,求出t的值;若不存在,请说明理由;
(3)试探究:点P在整个运动过程中,当t取何值时,S的值最大?并求出最大值.