已知:如图,直线DE交△ABC的两边AB.AC于点D.E,且∠1=∠B则. 查看更多

 

题目列表(包括答案和解析)

已知,如图,一条抛物线的对称轴是直线x=
32
,经过点(1,-3)、(3,-2),与x轴交于A、B两点,与y轴交于点C.D、E分别是边AC、BC上的两个动点(不与A、精英家教网B重合),且保持DE∥AB.以DE为边向上作正方形DEFG.
(1)求二次函数的解析式.
(2)试判断△ABC的形状,并说明理由.
(3)当正方形的边GF在AB边上时,求正方形DEFG的边长.
(4)当D、E在运动过程中,正方形DEFG的边长能否与△ABC的外接圆相切?若相切,求出DE的长;若不能,则说明理由.

查看答案和解析>>

已知两个全等的等腰直角△ABC、△DEF,其中∠ACB=∠DFE=90°,E为AB中点,△DEF可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在直线)于M、N.
(1)如图l,当线段EF经过△ABC的顶点C时,点N与点C重合,线段DE交AC于M,求证:AM=MC;
(2)如图2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由;
(3)如图3,当线段EF与BC延长线交于N点,线段DE与线段AC交于M点,连MN,EC,请猜想AM,MN,CN之间的等量关系,不必说明理由.

查看答案和解析>>

已知,如图,一条抛物线的对称轴是直线x=数学公式,经过点(1,-3)、(3,-2),与x轴交于A、B两点,与y轴交于点C.D、E分别是边AC、BC上的两个动点(不与A、B重合),且保持DE∥AB.以DE为边向上作正方形DEFG.
(1)求二次函数的解析式.
(2)试判断△ABC的形状,并说明理由.
(3)当正方形的边GF在AB边上时,求正方形DEFG的边长.
(4)当D、E在运动过程中,正方形DEFG的边长能否与△ABC的外接圆相切?若相切,求出DE的长;若不能,则说明理由.

查看答案和解析>>

已知:关于x的一元二次方程:.

(1)求证:这个方程有两个不相等的实数根;

(2)当抛物线x轴的交点位于原点的两侧,且到原点的距离相等时,
求此抛物线的解析式;

(3)将(2)中的抛物线在x轴下方的部分沿x轴翻折,其余部分保持能够不变,得到图形C1,将图形C1向右平移一个单位,得到图形C2,当直线(b<0)与图形C2恰有两个公共点时,写出b的取值范围.

24.已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BCDA=DE,联结EC,取EC的中点M,联结BMDM

(1)如图1,如果点DE分别在边ACAB上,那么BMDM的数量关系与位置关系是                        

(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.

                 

查看答案和解析>>

已知,如图,一条抛物线的对称轴是直线x=,经过点(1,-3)、(3,-2),与x轴交于A、B两点,与y轴交于点C.D、E分别是边AC、BC上的两个动点(不与A、B重合),且保持DE∥AB.以DE为边向上作正方形DEFG.
(1)求二次函数的解析式.
(2)试判断△ABC的形状,并说明理由.
(3)当正方形的边GF在AB边上时,求正方形DEFG的边长.
(4)当D、E在运动过程中,正方形DEFG的边长能否与△ABC的外接圆相切?若相切,求出DE的长;若不能,则说明理由.

查看答案和解析>>


同步练习册答案