如图.已知∠C=∠1.那么根据 .可得 AD∥BC. 查看更多

 

题目列表(包括答案和解析)

根据“角平分线上的点到这个角两边的距离相等”来观察下图:
(1)已知OM是∠AOB的平分线,P是OM上的一点,且PE⊥OA,PF⊥OB.垂足分别为E.F,那么______=______.这是根据“______”可得△POE≌△POF而得到的.
(2)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB,垂足为E,AB=6cm,则△DEB的周长为______cm.

查看答案和解析>>

根据“角平分线上的点到这个角两边的距离相等”来观察下图:
(1)已知OM是∠AOB的平分线,P是OM上的一点,且PE⊥OA,PF⊥OB.垂足分别为E.F,那么______=______.这是根据“______”可得△POE≌△POF而得到的.
(2)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB,垂足为E,AB=6cm,则△DEB的周长为______cm.

精英家教网

查看答案和解析>>

我们都知道,在等腰三角形中.有等边对等角(或等角对等边),那么在不等腰三角形中边与角的大小关系又是怎样的呢?让我们来探究一下.
如图1,在△ABC中,已知AB>AC,猜想∠B与∠C的大小关系,并证明你的结论;
证明:猜想∠C>∠B,对于这个猜想我们可以这样来证明:
在AB上截取AD=AC,连接CD,
∵AB>AC,∴点D必在∠BCA的内部
∴∠BCA>∠ACD
∵AD=AC,∴∠ACD=∠ADC
又∵∠ADC是△BCD的一个外角,∴∠ADC>∠B
∴∠BCA>∠ACD>∠B 即∠C>∠B
上面的探究过程是研究图形中不等量关系证明的一种方法,将不等的线段转化为相等的线段,由此解决问题,体现了数学的转化的思想方法.请你仿照类比上述方法,解决下面问题:
(1)如图2,在△ABC中,已知AC>BC,猜想∠B与∠A的大小关系,并证明你的结论;
(2)如图3,△ABC中,已知∠C>∠B,猜想AB与AC大小关系,并证明你的结论;
(3)根据前面得到的结果,请你总结出三角形中边、角不等关系的一般性结论.

查看答案和解析>>

让我们借助平面直角坐标系,一起探索圆的一种奇特的性质.
如图,以平面直角坐标系xOy的原点O为圆心,2个单位长为半径作⊙O,⊙O分别交x轴的负半轴及y轴正半轴于C、D两点,已知A(1,0),B(4,0).
(1)填空:AC:BC=
1:2
1:2
,AD:BD=
1:2
1:2

(2)如果点P是圆上一个动点,那么上述结论是否仍然成立?请以点P在第二象限的情况进行探索.
解:(2)不妨假设点P在第二象限,且没点P坐标为(x,y),
根据勾股定理可得:x2+y2=
4
4
.(请你继续做下去并在最后对本小题的问题作出回答.)

查看答案和解析>>

让我们借助平面直角坐标系,一起探索圆的一种奇特的性质.
如图,以平面直角坐标系xOy的原点O为圆心,2个单位长为半径作⊙O,⊙O分别交x轴的负半轴及y轴正半轴于C、D两点,已知A(1,0),B(4,0).
(1)填空:AC:BC=______,AD:BD=______;
(2)如果点P是圆上一个动点,那么上述结论是否仍然成立?请以点P在第二象限的情况进行探索.
解:(2)不妨假设点P在第二象限,且没点P坐标为(x,y),
根据勾股定理可得:x2+y2=______.(请你继续做下去并在最后对本小题的问题作出回答.)

查看答案和解析>>


同步练习册答案