若sinα=.则锐角α= 度, 查看更多

 

题目列表(包括答案和解析)

在初中,我们学习过锐角的正弦、余弦、正切和余切四种三角函数,即在图1所示的直角三角形ABC,∠A是锐角,那么
sinA=数学公式,cosA=数学公式,tanA=数学公式,cotA=数学公式

为了研究需要,我们再从另一个角度来规定一个角的三角函数的意义:
设有一个角α,我们以它的顶点作为原点,以它的始边作为x轴的正半轴ox,建立直角坐标系(图2),在角α的终边上任取一点P,它的横坐标是x,纵坐标是y,点P 和原点(0,0)的距离为数学公式(r总是正的),然后把角α的三角函数规定为:
sinα=数学公式,cosα=数学公式,tanα=数学公式,cotα=数学公式
我们知道,图1的四个比值的大小与角A的大小有关,而与直角三角形的大小无关,同样图2中四个比值的大小也仅与角α的大小有关,而与点P在角α的终边位置无关.
比较图1与图2,可以看出一个角的三角函数的意义的两种规定实际上是一样的,根据第二种定义回答下列问题,每题4分,共16分
(1)若270°<α<360°,则角α的三角函数值sinα、cosα、tanα、cotα,其中取正值的是______;
(2)若角α的终边与直线y=2x重合,则sinα+cosα=______;
(3)若角α是钝角,其终边上一点P(x,数学公式),且cosα=数学公式,则tanα______;
(4)若 0°≤α≤90°,则sinα+cosα 的取值范围是______.

查看答案和解析>>

阅读下列材料,并解决后面的问题.

在锐角△ABC中,∠A、∠B、∠C的对边分别是abc.过AADBCD(如图),

sinB=sinc=,即AD=csinBAD=bsinC,于是csinB=bsinC,即.同理有

………………(*

即:在一个三角形中,各边和它所对角的正弦的比相等.

(1)在锐角三角形中,若已知三个元素ab、∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:

第一步,由条件              B

第二步,由条件              C

第三步,由条件              c

(2)一货轮在C处测得灯塔A 在货轮的北偏西的方向上,随后货轮以28.4海里/时的速度按北偏东的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西的方向上(如图),求此时货轮距灯塔A的距离AB(结果精确到0.1.参考数据:sin=0.643sin=0.906 sin=0.904sin=0.966).

查看答案和解析>>

精英家教网(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.
(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.
(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinα
 
cosα;若0°<α<45°,则sinα
 
cosα;若45°<α<90°,sinα
 
 cosα.

查看答案和解析>>

(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.
(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.
(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinα______cosα;若0°<α<45°,则sinα______cosα;若45°<α<90°,sinα______ cosα.

查看答案和解析>>

(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.
(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.
(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinα______cosα;若0°<α<45°,则sinα______cosα;若45°<α<90°,sinα______ cosα.

查看答案和解析>>


同步练习册答案