n边形的内角和S与边数n的关系式 ;自变量是 ,函数是 . 查看更多

 

题目列表(包括答案和解析)

如图1,菱形ABOC的对角线OA、BC交于点D,∠BOC=60°,OA=,E为AC边中点,BE与OA交于点F,点P从点O(包含顶点O)开始沿OA方向以每秒个单位长度的速度运动,同时,点Q从点C(包含顶点C)出发沿CB方向以每秒1个单位长度的速度运动,当P到达点A时,P,Q同时停止运动,设运动时间为x秒。

(1)若记以P、B、E、Q为顶点的四边形面积为S,分别求出点P在线段OD(不含点D)和在线段AF(不含点F)上时,S关于x的函数关系式,并写出相应的自变量x的取值范围;
(2)若以P、B、E、Q为顶点的四边形是梯形,求x的值;
(3)如图2,若点M、N分别在菱形的边OC、AC上,且∠MBN=60°,∠MBN在∠OBA内部绕着点B旋转的过程中,请你探究OM+AN的值是否发生变化,若不变,求出其值;若发生变化,请说明理由。

查看答案和解析>>

已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(03),BC2ABPAD边上一动点(与点AD不重合),以点P为圆心作⊙P与对角线AC相切于点F,过PF作直线L,交BC边于点E ,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y2x1

⑴求BCAP1的长;

⑵设APm,梯形PECD的面积为S,求Sm之间的函数关系式,写出自变量m的取值范围;

⑶以点E为圆心作⊙Ex轴相切

①探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围;

②当直线L把矩形ABCD分成两部分的面积之比值为35时,则⊙P和⊙E的位置关系如何?并说明理由。

查看答案和解析>>

已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=6,BC=8,AD=14, E为AB上一点,BE=2,点F在BC边上运动,以FE为一边作菱形FEHG,使点H 落在AD边上,点G落在梯形ABCD内或其边上,若BF=x,△FCG的面积为y。
(1)当x=_________ 时,四边形FEHG为正方形;
(2)求y与x的函数关系式;(不要求写出自变量的取值范围)
(3)在备用图中分别画出△FCG的面积取得最大值和最小值时相应的图形(不要求尺规作图,不要求写画法),并求△FCG面积的最大值和最小值;(计算过程可简要书写)
(4)△FOG的面积由最大值变到最小值时,点G运动的路线长为______________。

查看答案和解析>>

已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E ,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)求BC、AP1的长;
(2)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(3)以点E为圆心作⊙E与x轴相切
①探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围;
②当直线L把矩形ABCD分成两部分的面积之比值为3∶5时,则⊙P和⊙E的位置关系如何?并说明理由。

查看答案和解析>>

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n。
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2)在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由。

查看答案和解析>>


同步练习册答案