求证:AD⊥EF. (8′) 查看更多

 

题目列表(包括答案和解析)

已知:在梯形ABCD中,AD∥BC,AB=DC,E,F分别是AB和BC边上的点。
(1)如图①,以EF为对称轴翻折梯形ABCD,使点B与点D重合,且DF⊥BC,若AD=4,BC=8,求梯形ABCD的面积S梯形ABCD的值;
(2)如图②,连接EF并延长与DC的延长线交于点G,如果FG=k·EF(k为正数),试猜想BE与CG有何数量关系写出你的结论并证明之。

查看答案和解析>>

如图EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。

证明:∵EF∥AD,(已知)

∴∠2=          .(                               )

又∵∠1=∠2,(已知)

∴∠1=∠3.(等量代换)

∴AB∥        (                              )

∴∠BAC+          =180 o .(                                       ).

∵∠BAC=70 o

∴∠AGD=            .

查看答案和解析>>

阅读理解填空:
(1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.

证明:∵AB∥CD,
∴∠MEB=∠MFD(           )
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______  
∴EP∥_____.(               )
(2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD.

解:∵EF∥AD,
∴∠2=       (                               )
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥       (                               )
∴∠BAC+         =180 o(                                      )
∵∠BAC=70 o
∴∠AGD=           

查看答案和解析>>

阅读理解填空:

(1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.

证明:∵AB∥CD,

∴∠MEB=∠MFD(           )

又∵∠1=∠2,

∴∠MEB-∠1=∠MFD-∠2,

即∠MEP=∠______  

∴EP∥_____.(               )

(2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD.

解:∵EF∥AD,

∴∠2=       (                               )

又∵∠1=∠2,

∴∠1=∠3,

∴AB∥       (                               )

∴∠BAC+         =180 o(                                      )

∵∠BAC=70 o

∴∠AGD=           

 

查看答案和解析>>

阅读理解填空:
(1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.

证明:∵AB∥CD,
∴∠MEB=∠MFD(           )
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______  
∴EP∥_____.(               )
(2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD.

解:∵EF∥AD,
∴∠2=       (                               )
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥       (                               )
∴∠BAC+         =180 o(                                      )
∵∠BAC=70 o
∴∠AGD=           

查看答案和解析>>


同步练习册答案