已知矩形的周长为12厘米.若一长为Y厘米.另一边为X厘米.则Y关于X的函数关系式为 .自变量的取什范围是 . 查看更多

 

题目列表(包括答案和解析)

解答题

已知矩形的周长为L,对角线长为a,且两条对角线的交角为.试写出周长L与对角线长a的函数关系式.并求当矩形的相邻两边分别为5和12时的周长.

查看答案和解析>>

(2012•营口一模)[提出问题]:已知矩形的面积为1,当该矩形的长为多少时,它的周长最小?最小值是多少?
[建立数学模型]:设该矩形的长为x,周长为y,则y与x的函数关系式为y=x+
1
x
(x>0).
[探索研究]:我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
x
1
4
1
3
1
2
1 2 3 4
y
②观察图象,写出当自变量x取何值时,函数y=x+
1
x
(x>0)有最小值;
③我们在课堂上求二次函数最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
1
x
(x>0)的最小值.

查看答案和解析>>

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
1
x
(x>0)的图象和性质.精英家教网
①填写下表,画出函数的图象;
x
1
4
1
3
1
2
1 2 3 4
y              
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
1
x
(x>0)的最小值.

【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

已知矩形的长为3,宽为1,现将四个这样的矩形,用不同的方式拼成一个面积为12的大矩形,那么这个大矩形的周长是
14或16或26
14或16或26

查看答案和解析>>

问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0)

探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
1
x
(x>0)
的图象性质.
1填写下表,画出函数的图象:
x
1
4
1
3
1
2
1 2 3 4
y
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1时,函数y=x+
1
x
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>


同步练习册答案